Sign in to view Jonathan’s full profile
Welcome back
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
New to LinkedIn? Join now
or
New to LinkedIn? Join now
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
United States Contact Info
Sign in to view Jonathan’s full profile
Welcome back
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
New to LinkedIn? Join now
or
New to LinkedIn? Join now
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
450 followers 437 connections
United States Contact Info
Sign in to view Jonathan’s full profile
Welcome back
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
New to LinkedIn? Join now
or
New to LinkedIn? Join now
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
450 followers 437 connections
View mutual connections with Jonathan
Welcome back
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
New to LinkedIn? Join now
or
New to LinkedIn? Join now
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
View mutual connections with Jonathan
Welcome back
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
New to LinkedIn? Join now
or
New to LinkedIn? Join now
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
Join to view profile
Sign in to view Jonathan’s full profile
Welcome back
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
New to LinkedIn? Join now
or
New to LinkedIn? Join now
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
US Department of Agriculture (USDA) Agricultural Research Service (ARS)
University of California, Davis
- Report this profile
About
Veterinary pathologist/epidemiologist with extensive research experience in animal…
Welcome back
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
New to LinkedIn? Join now
Activity
Sign in to view Jonathan’s full profile
Welcome back
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
New to LinkedIn? Join now
or
New to LinkedIn? Join now
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
-
New article from our collaboration with USDA’s Agricultural Research Service aiming to improve our understanding of foot and mouth disease…
New article from our collaboration with USDA’s Agricultural Research Service aiming to improve our understanding of foot and mouth disease…
Liked by Jonathan Arzt, DVM, MPVM, PhD, DACVP
-
Pleased to share our new study on parameterization of foot-mouth- disease infection state duration in cattle, which could support the data gap in…
Pleased to share our new study on parameterization of foot-mouth- disease infection state duration in cattle, which could support the data gap in…
Liked by Jonathan Arzt, DVM, MPVM, PhD, DACVP
-
The Center for Epidemiology and Animal Health is hiring! Join a great team to collaboratively develop and enhance animal health surveillance systems…
The Center for Epidemiology and Animal Health is hiring! Join a great team to collaboratively develop and enhance animal health surveillance systems…
Liked by Jonathan Arzt, DVM, MPVM, PhD, DACVP
Experience & Education
-
US Department of Agriculture (USDA) Agricultural Research Service (ARS)
******** ********** ******* ******* (*********)
-
********** ********** ************, ********
****** ** ********** ********
-
******** ***** **********
******** ** ********** ******** *********
-
********** ** **********, *****
****** ** ************ ********** ******** (****)
-
******** ***** **********
****** ** ********** - *** ********** ********* *** ************
View Jonathan’s full experience
See their title, tenure and more.
Welcome back
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
New to LinkedIn? Join now
or
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
Licenses & Certifications
-
Diplomate American College of Veterinary Pathology (DAVCP/DipACVP)
American College of Veterinary Pathology
-
License to practice Veterinary Medecine
New York State
Publications
-
A partial deletion within foot-and-mouth disease virus non-structural protein 3A causes clinical attenuation in cattle but does not prevent subclinical infection
Virology
Deletions within the 3A coding region of foot-and-mouth disease virus (FMDV) are associated with decreased virulence in cattle; however, the mechanisms are unknown. We compared experimental infection of cattle with virulent FMDV O1Campos (O1Ca) and a mutant derivative (O1Ca∆3A) lacking residues 87–106 of 3A. Unexpectedly, primary infection of the nasopharyngeal mucosa was similar for both viruses. However, while O1Ca caused viremia and fulminant clinical disease, O1Ca∆3A infection was…
Deletions within the 3A coding region of foot-and-mouth disease virus (FMDV) are associated with decreased virulence in cattle; however, the mechanisms are unknown. We compared experimental infection of cattle with virulent FMDV O1Campos (O1Ca) and a mutant derivative (O1Ca∆3A) lacking residues 87–106 of 3A. Unexpectedly, primary infection of the nasopharyngeal mucosa was similar for both viruses. However, while O1Ca caused viremia and fulminant clinical disease, O1Ca∆3A infection was subclinical and aviremic. There were no differences in expression of anti-viral cytokines in nasopharyngeal tissues between the groups, suggesting attenuation by O1Ca∆3A was a consequence of reduced replication efficiency in bovine cells, rather than a difference in the host response. These results demonstrated that although deletion in 3A of FMDV confers a clinically attenuated phenotype in cattle, the deletion does not prevent subclinical infection. These findings have implications for field scenarios involving outbreaks with apparently host-limited strains of FMDV
Other authors
See publication
-
A traditional evolutionary history of foot-and-mouth disease viruses in Southeast Asia challenged by analyses of non-structural protein coding sequences
Scientific Reports
Recombination of rapidly evolving RNA-viruses provides an important mechanism for diversification, spread, and emergence of new variants with enhanced fitness. Foot-and-mouth disease virus (FMDV) causes an important transboundary disease of livestock that is endemic to most countries in Asia and Africa. Maintenance and spread of FMDV are driven by periods of dominance of specific viral lineages. Current understanding of the molecular epidemiology of FMDV lineages is generally based on the…
Recombination of rapidly evolving RNA-viruses provides an important mechanism for diversification, spread, and emergence of new variants with enhanced fitness. Foot-and-mouth disease virus (FMDV) causes an important transboundary disease of livestock that is endemic to most countries in Asia and Africa. Maintenance and spread of FMDV are driven by periods of dominance of specific viral lineages. Current understanding of the molecular epidemiology of FMDV lineages is generally based on the phylogenetic relationship of the capsid-encoding genes, with less attention to the process of recombination and evolution of non-structural proteins. In this study, the putative recombination breakpoints of FMDVs endemic to Southeast Asia were determined using full-open reading frame sequences. Subsequently, the lineages’ divergence times of recombination-free genome regions were estimated. These analyses revealed a close relationship between two of the earliest endemic viral lineages that appear unrelated when only considering the phylogeny of their capsid proteins. Contrastingly, one lineage, named O/CATHAY, known for having a particular host predilection (pigs) has evolved independently. Additionally, intra-lineage recombination occurred at different breakpoints compared to the inter-lineage process. These results provide new insights about FMDV recombination patterns and the evolutionary interdependence of FMDV serotypes and lineages.
Other authors
See publication
-
Characterization of naturally occurring, new and persistent subclinical foot‐and‐mouth disease virus infection in vaccinated Asian buffalo in Islamabad Capital Territory, Pakistan
Transboundary and Emerging Diseases
The convalescent subclinical carrier state of foot‐and‐mouth disease virus (FMDV)
infection has been thoroughly investigated; contrastingly, the subclinical form of
new infections of vaccinated and naïve hosts is recognized, but poorly understood.
To investigate the natural dynamics of subclinical FMDV infections, a prospective,
12‐month, longitudinal study was conducted in vaccinated Asian buffalo (Bubalus
bubalis) under natural conditions in Pakistan, where FMDV is…The convalescent subclinical carrier state of foot‐and‐mouth disease virus (FMDV)
infection has been thoroughly investigated; contrastingly, the subclinical form of
new infections of vaccinated and naïve hosts is recognized, but poorly understood.
To investigate the natural dynamics of subclinical FMDV infections, a prospective,
12‐month, longitudinal study was conducted in vaccinated Asian buffalo (Bubalus
bubalis) under natural conditions in Pakistan, where FMDV is hyperendemic.
Oropharyngeal fluid (OPF) samples were obtained quarterly from 300 buffalo on 30
farms which reported no clinical FMD during the 12‐month study period. At the
start of the study, 77.7% of buffalo had FMDV anti‐NSP antibodies, and all farms
had at least one seropositive buffalo. Based upon the presence of viral RNA and
viral VP1 sequences obtained, distinct subcategories of subclinical infections were
documented, including new, persistent, and serial infections with different FMDV
strains. Viral RNA was detected in at least one OPF sample from 180 (60%) of the
300 buffalo. Over the course of the study, FMDV was detected in OPF of 80 buffalo
that had been FMDV‐free in previous OPF samples, indicating the occurrence
of new subclinical infections. Eight buffalo were confirmed to be persistently
infected, and serial infection with different FMDVs was confirmed in 13 animals.
The most prevalent serotype detected was Asia‐1, followed by A, and O. Phylogenetic
analysis indicated multiple distinct clusters of serotypes Asia‐1 and A. This
study indicates a high prevalence of subclinical FMDV infection in vaccinated buffalo
in Pakistan and emphasizes the importance of clinically undetected infection in
FMD dynamics in endemic regions.Other authors
See publication
-
Contact Challenge of Cattle with Foot-and-Mouth Disease Virus Validates the Role of the Nasopharyngeal Epithelium as the Site of Primary and Persistent Infection
mSphere
The pathogenesis of foot-and-mouth disease virus (FMDV) in cattle was investigated through early and late stages of infection by use of an optimized experimental model for controlled contact exposure. Time-limited exposure of cattle to FMDV-infected pigs led to primary FMDV infection of the nasopharyngeal mucosa in both vaccinated and nonvaccinated cattle. In nonvaccinated cattle, the infection generalized rapidly to cause clinical disease, without apparent virus amplification in the lungs…
The pathogenesis of foot-and-mouth disease virus (FMDV) in cattle was investigated through early and late stages of infection by use of an optimized experimental model for controlled contact exposure. Time-limited exposure of cattle to FMDV-infected pigs led to primary FMDV infection of the nasopharyngeal mucosa in both vaccinated and nonvaccinated cattle. In nonvaccinated cattle, the infection generalized rapidly to cause clinical disease, without apparent virus amplification in the lungs prior to establishment of viremia. Vaccinated cattle were protected against clinical disease and viremia; however, all vaccinated cattle were subclinically infected, and persistent infection occurred at similarly high prevalences in both animal cohorts. Infection dynamics in cattle were consistent and synchronous and comparable to those of simulated natural and needle inoculation systems. However, the current experimental model utilizes a natural route of virus exposure and is therefore superior for investigations of disease pathogenesis and host response. Deep sequencing of viruses obtained during early infection of pigs and cattle indicated that virus populations sampled from sites of primary infection were markedly more diverse than viruses from vesicular lesions of cattle, suggesting the occurrence of substantial bottlenecks associated with vesicle formation. These data expand previous knowledge of FMDV pathogenesis in cattle and provide novel insights for validation of inoculation models of bovine FMD studies.
Other authors
See publication
-
Lack of Transmission of Foot-and-Mouth Disease Virus From Persistently Infected Cattle to Naïve Cattle Under Field Conditions in Vietnam
Frontiers in Veterinary Science
Foot-and-mouth disease (FMD), caused by FMD virus (FMDV; Aphthovirus, Picornaviridae), is a highly contagious and economically important disease of cloven-hoofed domestic livestock and wildlife species worldwide. Subsequent to the clinical phase of FMD, a large proportion of FMDV-infected ruminants become persistently infected carriers, defined by detection of FMDV in oropharyngeal fluid (OPF) samples 28 days or more post-infection. The goal of this prospective study was to characterize the FMD…
Foot-and-mouth disease (FMD), caused by FMD virus (FMDV; Aphthovirus, Picornaviridae), is a highly contagious and economically important disease of cloven-hoofed domestic livestock and wildlife species worldwide. Subsequent to the clinical phase of FMD, a large proportion of FMDV-infected ruminants become persistently infected carriers, defined by detection of FMDV in oropharyngeal fluid (OPF) samples 28 days or more post-infection. The goal of this prospective study was to characterize the FMD carrier state in cattle subsequent to natural infection under typical husbandry practices in Vietnam. Ten persistently infected cattle on eight farms in the Long An province in southern Vietnam were monitored by monthly screening of serum and oropharyngeal fluid samples for 12 months. To assess transmission from FMDV carriers, 16 naïve cattle were intentionally brought into direct contact with the persistently infected animals for 6 months, and were monitored by clinical and laboratory methods. There was no evidence of transmission to naïve animals throughout the study period. Additionally, there was no detection of FMDV infection or seroconversion in three calves born to carrier animals during the study. Phylogenetic analysis of (VP1) coding sequences obtained from carriers indicated that all viruses recovered in this study belonged to the O/ME-SA/PanAsia lineage, and grouped phylogenetically with temporally and geographically related viruses. Analysis of within-host evolution of FMDV, based upon full-length open reading frame sequences recovered from consecutive samples from one animal, indicated that most of the non-synonymous changes occurred in Lpro, VP2, and VP3 protein coding regions. This study suggests that the duration of FMDV persistent infection in cattle may be longer than previously recognized, but the risk of transmission is low. Additional novel insights are provided into within-host viral evolution under natural conditions in an endemic setting.
Other authors
See publication
-
Transmission of Foot-and-Mouth Disease from Persistently Infected Carrier Cattle to Naive Cattle via Transfer of Oropharyngeal Fluid
mSphere
Control and eradication of foot-and-mouth disease (FMD) are impeded by the existence of a persistent, subclinical phase of infection in ruminants; animals with this status are referred to as carriers. However, the epidemiological significance of these FMD virus (FMDV) carriers is uncertain. In the current investigation, the contagion associated with FMDV carrier cattle was investigated by exposure of susceptible cattle and pigs to oropharyngeal fluid (OPF) samples or tissues harvested from…
Control and eradication of foot-and-mouth disease (FMD) are impeded by the existence of a persistent, subclinical phase of infection in ruminants; animals with this status are referred to as carriers. However, the epidemiological significance of these FMD virus (FMDV) carriers is uncertain. In the current investigation, the contagion associated with FMDV carrier cattle was investigated by exposure of susceptible cattle and pigs to oropharyngeal fluid (OPF) samples or tissues harvested from persistently infected cattle. Naive cattle were inoculated through intranasopharyngeal deposition of unprocessed OPF samples that had been collected from FMDV carriers at 30 days postinfection. These inoculated cattle developed clinical FMD, and the severity of disease they developed was similar to that of animals that had been infected with a high-titer inoculum. In contrast, pigs exposed via intraoropharyngeal inoculation of the same OPF samples or via ingestion of nasopharyngeal tissues harvested from the same cohort of persistently infected cattle did not develop FMD. These findings indicate that there is demonstrable contagion associated with FMDV carrier cattle despite the lack of evidence for transmission by direct contact. The findings presented herein provide novel information that should be considered for FMD risk mitigation strategies.
Other authors
See publication
-
Clearance of a persistent picornavirus infection is associated with enhanced pro-apoptotic and cellular immune responses
Scientific Reports
Long-term persistent viral infections cause substantial morbidity and associated economic losses in human and veterinary contexts. Yet, the mechanisms associated with establishment of persistent infections are poorly elucidated. We investigated immunomodulatory mechanisms associated with clearance versus persistence of foot-and-mouth disease virus (FMDV) in micro-dissected compartments of the bovine nasopharynx by microarray. The use of laser-capture microdissection allowed elucidation of…
Long-term persistent viral infections cause substantial morbidity and associated economic losses in human and veterinary contexts. Yet, the mechanisms associated with establishment of persistent infections are poorly elucidated. We investigated immunomodulatory mechanisms associated with clearance versus persistence of foot-and-mouth disease virus (FMDV) in micro-dissected compartments of the bovine nasopharynx by microarray. The use of laser-capture microdissection allowed elucidation of differential gene regulation within distinct anatomic compartments critical to FMDV infection. Analysis of samples from transitional and persistent phases of infection demonstrated significant differences in transcriptome profiles of animals that cleared infection versus those that became persistently infected carriers. Specifically, it was demonstrated that clearance of FMDV from the nasopharyngeal mucosa was associated with upregulation of targets associated with activation of T cell-mediated immunity. Contrastingly, gene regulation in FMDV carriers suggested inhibition of T cell activation and promotion of Th2 polarization. These findings were corroborated by immunofluorescence microscopy which demonstrated relative abundance of CD8+ T cells in the nasopharyngeal mucosa in association with clearance of FMDV. The findings presented herein emphasize that a critical balance between Th1 and Th2 -mediated immunity is essential for successful clearance of FMDV infection and should be considered for development of next-generation vaccines and antiviral products.
Other authors
See publication
-
Pathogenesis of virulent and attenuated foot-and-mouth disease virus in cattle
Virology Journal
Understanding the mechanisms of attenuation and virulence of foot-and-mouth disease virus (FMDV) in the natural host species is critical for development of next-generation countermeasures such as live-attenuated vaccines. Previous work from our laboratory has characterized host factors in cattle inoculated with virulent FMDV and attenuated mutant strains with transposon insertions within Lpro.
In the current study, the characteristics defining virulence of FMDV in cattle were further…Understanding the mechanisms of attenuation and virulence of foot-and-mouth disease virus (FMDV) in the natural host species is critical for development of next-generation countermeasures such as live-attenuated vaccines. Previous work from our laboratory has characterized host factors in cattle inoculated with virulent FMDV and attenuated mutant strains with transposon insertions within Lpro.
In the current study, the characteristics defining virulence of FMDV in cattle were further investigated by comparing the pathogenesis of a mutant, attenuated strain (FMDV-Mut) to the parental, virulent virus from which the mutant was derived (FMDV-WT). The only difference between the two viruses was an insertion mutation in the inter-AUG region of the leader proteinase of FMDV-Mut. All cattle were infected by simulated-natural, aerosol inoculation.
Both viruses were demonstrated to establish primary infection in the nasopharyngeal mucosa with subsequent dissemination to the lungs. Immunomicroscopic localization of FMDV antigens indicated that both viruses infected superficial epithelial cells of the nasopharynx and lungs. The critical differences between the two viruses were a more rapid establishment of infection by FMDV-WT and quantitatively greater virus loads in secretions and infected tissues compared to FMDV-Mut.
The mutant FMDV was capable of achieving all the same early pathogenesis landmarks as FMDV-WT, but was unable to establish systemic infection. The precise mechanism of attenuation remains undetermined; but current data suggests that the impaired replication of the mutant is more responsible for attenuation than differences in host immunological factors. These results complement previous studies by providing data of high-granularity describing tissue-specific tropism of FMDV and by demonstrating microscopic localization of virulent and attenuated clones of the same field-strain FMDV.
Other authors
See publication
-
Phylodynamics of foot.and.mouth disease virus O/PanAsia in Vietnam 2010.2014
Veterinary Research
Foot-and-mouth disease virus (FMDV) is endemic in Vietnam, a country that plays an important role in livestock trade within Southeast Asia. The large populations of FMDV-susceptible species in Vietnam are important components of food production and of the national livelihood. In this study, we investigated the phylogeny of FMDV O/PanAsia in Vietnam, reconstructing the virus’ ancestral host species (pig, cattle or buffalo), clinical stage (subclinical carrier or clinically affected) and…
Foot-and-mouth disease virus (FMDV) is endemic in Vietnam, a country that plays an important role in livestock trade within Southeast Asia. The large populations of FMDV-susceptible species in Vietnam are important components of food production and of the national livelihood. In this study, we investigated the phylogeny of FMDV O/PanAsia in Vietnam, reconstructing the virus’ ancestral host species (pig, cattle or buffalo), clinical stage (subclinical carrier or clinically affected) and geographical location. Phylogenetic divergence time estimation and character state reconstruction analyses suggest that movement of viruses between species differ. While inferred transmissions from cattle to buffalo and pigs and from pigs to cattle are well supported, transmission from buffalo to other species, and from pigs to buffalo may be less frequent. Geographical movements of FMDV O/PanAsia virus appears to occur in all directions within the country, with the South Central Coast and the Northeast regions playing a more important role in FMDV O/PanAsia spread. Genetic selection of variants with changes at specific sites within FMDV VP1 coding region was different depending on host groups analyzed. The overall ratio of non-synonymous to synonymous nucleotide changes was greater in pigs compared to cattle and buffalo, whereas a higher number of individual amino acid sites under positive selection were detected in persistently infected, subclinical animals compared to viruses collected from clinically diseased animals. These results provide novel insights to understand FMDV evolution and its association with viral spread within endemic countries. These findings may support animal health organizations in their endeavor to design animal disease control strategies in response to outbreaks.
Other authors
See publication
-
The Foot-and-Mouth Disease Carrier State Divergence in Cattle
Journal of Virology
The pathogenesis of persistent foot-and-mouth disease virus (FMDV) infection was investigated in 46 cattle that were either naive or had been vaccinated using a recombinant, adenovirus-vectored vaccine 2 weeks before challenge. The prevalence of FMDV persistence was similar in both groups (62% in vaccinated cattle, 67% in nonvaccinated cattle), despite vaccinated cattle having been protected from clinical disease. Analysis of antemortem infection dynamics demonstrated that the subclinical…
The pathogenesis of persistent foot-and-mouth disease virus (FMDV) infection was investigated in 46 cattle that were either naive or had been vaccinated using a recombinant, adenovirus-vectored vaccine 2 weeks before challenge. The prevalence of FMDV persistence was similar in both groups (62% in vaccinated cattle, 67% in nonvaccinated cattle), despite vaccinated cattle having been protected from clinical disease. Analysis of antemortem infection dynamics demonstrated that the subclinical divergence between FMDV carriers and animals that cleared the infection had occurred by 10 days postinfection (dpi) in vaccinated cattle and by 21 dpi in nonvaccinated animals. The anatomic distribution of virus in subclinically infected, vaccinated cattle was restricted to the pharynx throughout both the early and the persistent phases of infection. In nonvaccinated cattle, systemically disseminated virus was cleared from peripheral sites by 10 dpi, while virus selectively persisted within the nasopharynx of a subset of animals. The quantities of viral RNA shed in oropharyngeal fluid during FMDV persistence were similar in vaccinated and nonvaccinated cattle. FMDV structural and nonstructural proteins were localized to follicle-associated epithelium of the dorsal soft palate and dorsal nasopharynx in persistently infected cattle. Host transcriptome analysis of tissue samples processed by laser capture microdissection indicated suppression of antiviral host factors (interferon regulatory factor 7, CXCL10 [gamma interferon-inducible protein 10], gamma interferon, and lambda interferon) in association with persistent FMDV. In contrast, during the transitional phase of infection, the level of expression of IFN-λ mRNA was higher in follicle-associated epithelium of animals that had cleared the infection. This work provides novel insights into the intricate mechanisms of FMDV persistence and contributes to further understanding of this critical aspect of FMDV pathogenesis.
Other authors
See publication
-
The pathogenesis of foot-and-mouth disease in pigs
Frontiers in Veterinary Science
The greatest proportion of foot-and-mouth disease (FMD) clinical research has been dedicated to elucidating pathogenesis and enhancing vaccine protection in cattle with less efforts invested in studies specific to pigs. However, accumulated evidence from FMD outbreaks and experimental investigations suggest that critical components of FMD pathogenesis, immunology, and vaccinology cannot be extrapolated from investigations performed in cattle to explain or predict outcomes of infection or…
The greatest proportion of foot-and-mouth disease (FMD) clinical research has been dedicated to elucidating pathogenesis and enhancing vaccine protection in cattle with less efforts invested in studies specific to pigs. However, accumulated evidence from FMD outbreaks and experimental investigations suggest that critical components of FMD pathogenesis, immunology, and vaccinology cannot be extrapolated from investigations performed in cattle to explain or predict outcomes of infection or vaccination in pigs. Furthermore, it has been shown that failure to account for these differences may have substantial consequences when FMD outbreaks occur in areas with dense pig populations.
Recent experimental studies have confirmed some aspects of conventional wisdom by demonstrating that pigs are more susceptible to FMD virus (FMDV) infection via exposure of the upper gastrointestinal tract (oropharynx) than through inhalation of virus. The infection spreads rapidly within groups of pigs that are housed together, although efficiency of transmission may vary depending on virus strain and exposure intensity. Multiple investigations have demonstrated that physical separation of pigs is sufficient to prevent virus transmission under experimental conditions.The aim of this review is to provide an overview of knowledge gained from experimental investigations of FMD pathogenesis, transmission and host response in pigs. Details of the temporo-anatomic progression of infection is discussed in relation to specific pathogenesis events and the likelihood of transmission. Additionally, relevant aspects of the host immune response are discussed within contexts of conventional and novel intervention strategies of vaccination and immunomodulation.
Other authors
See publication
-
Transmission of Foot-and-Mouth Disease Virus during the Incubation Period in Pigs
Frontiers in Veterinary Science
In the current investigation, the potential for transmission of foot-and-mouth disease virus (FMDV) during the incubation (preclinical) period of infection was investigated in seven groups of pigs that were sequentially exposed to a group of donor pigs that were infected by simulated-natural inoculation. Contact-exposed pigs were comingled with infected donors through successive 8-h time slots spanning from 8 to 64 h post-inoculation (hpi) of the donor pigs. The transition from latent to…
In the current investigation, the potential for transmission of foot-and-mouth disease virus (FMDV) during the incubation (preclinical) period of infection was investigated in seven groups of pigs that were sequentially exposed to a group of donor pigs that were infected by simulated-natural inoculation. Contact-exposed pigs were comingled with infected donors through successive 8-h time slots spanning from 8 to 64 h post-inoculation (hpi) of the donor pigs. The transition from latent to infectious periods in the donor pigs was clearly defined by successful transmission of foot-and-mouth disease (FMD) to all contact pigs that were exposed to the donors from 24 hpi and later. This onset of infectiousness occurred concurrent with detection of viremia, but approximately 24 h prior to the first appearance of clinical signs of FMD in the donors. Thus, the latent period of infection ended approximately 24 h before the end of the incubation period. There were significant differences between contact-exposed groups in the time elapsed from virus exposure to the first detection of FMDV shedding, viremia, and clinical lesions. Specifically, the onset and progression of clinical FMD were more rapid in pigs that had been exposed to the donor pigs during more advanced phases of disease, suggesting that these animals had received a higher effective challenge dose. These results demonstrate transmission and dissemination of FMD within groups of pigs during the incubation period of infection. Furthermore, these findings suggest that under current conditions, shedding of FMDV in oropharyngeal fluids is a more precise proxy for FMDV infectiousness than clinical signs of infection. These findings may impact modeling of the propagation of FMD outbreaks that initiate in pig holdings and should be considered when designing FMD control strategies.
Other authors
See publication
-
Clinical and virological dynamics of a serotype O 2010 South East Asia lineage foot-and-mouth disease virus in sheep using natural and simulated natural inoculation and exposure systems
Veterinary Microbiology
Within-host infection dynamics of a recent field isolate of foot-and-mouth disease virus (FMDV), serotype O, topotype South East Asia, lineage Myamar'98 were evaluated in sheep using four different systems for virus exposure. Two novel, simulated natural, inoculation systems consisting of intra-nasopharyngeal (INP) deposition and aerosol inoculation were evaluated in comparison with two conventional systems: coronary band inoculation and direct contact exposure. All four exposure systems were…
Within-host infection dynamics of a recent field isolate of foot-and-mouth disease virus (FMDV), serotype O, topotype South East Asia, lineage Myamar'98 were evaluated in sheep using four different systems for virus exposure. Two novel, simulated natural, inoculation systems consisting of intra-nasopharyngeal (INP) deposition and aerosol inoculation were evaluated in comparison with two conventional systems: coronary band inoculation and direct contact exposure. All four exposure systems were efficient in generating consistently severe, generalized FMD with synchronous clinical characteristics within exposure groups, indicating that this Myanmar98 strain is highly virulent in sheep. Clinical and virological dynamics were similarly rapid following INP- and coronary band inoculation, with both systems leading to significantly earlier detection of virus shedding when compared to aerosol inoculation and contact exposure. The data presented herein support application of the two optimized simulated natural inoculation systems as valid alternatives to conventionally used exposure systems for studies of FMDV pathogenesis and vaccinology in sheep. Furthermore, the data suggest that targeted exposure of the ovine pharynx is highly efficient for generating consistent FMDV infection, which supports critical involvement of this anatomic region as a site of primary virus replication in sheep.
Other authors
See publication
-
An Integrative Analysis of Foot-and-Mouth Disease Virus Carriers in Vietnam Achieved Through Targeted Surveillance and Molecular Epidemiology
Transboundary and Emerging Diseases
Foot-and-mouth disease (FMD) is a major constraint to transboundary trade in
animal products, yet much of its natural ecology and epidemiology in endemic
regions is still poorly understood. To address this gap, a multidisciplinary, molecular
and conventional epidemiological approach was applied to an investigation
of endemic FMD in Vietnam. Within the study space, it was found that 22.3% of
sampled ruminants had previously been infected with FMD virus (FMDV), of
which 10.8%…Foot-and-mouth disease (FMD) is a major constraint to transboundary trade in
animal products, yet much of its natural ecology and epidemiology in endemic
regions is still poorly understood. To address this gap, a multidisciplinary, molecular
and conventional epidemiological approach was applied to an investigation
of endemic FMD in Vietnam. Within the study space, it was found that 22.3% of
sampled ruminants had previously been infected with FMD virus (FMDV), of
which 10.8% were persistent, asymptomatic carriers (2.4% of the total population).
Descriptive data collected from targeted surveillance and a farm questionnaire
showed a significantly lower prevalence of FMDV infection for dairy farms.
In contrast, farms of intermediate size and/or history of infection in 2010 were at
increased risk of FMD exposure. At the individual animal level, buffalo had the
highest exposure risk (over cattle), and there was spatial heterogeneity in exposure
risk at the commune level. Conversely, carrier prevalence was higher for beef cattle,
suggesting lower susceptibility of buffalo to persistent FMDV infection. To
characterize virus strains currently circulating in Vietnam, partial FMDV genomic
(VP1) sequences from carrier animals collected between 2012 and 2013 (N = 27)
and from FMDV outbreaks between 2009 and 2013 (N = 79) were compared by
phylogenetic analysis. Sequence analysis suggested that within the study period,
there were two apparent novel introductions of serotype A viruses and that the
dominant lineage of serotype O in Vietnam shifted from SEA/Mya-98 to ME-SA/
PanAsia. FMDV strains shared close ancestors with FMDV from other South-East
Asian countries indicating substantial transboundary movement of the
predominant circulating strains. Close genetic relationships were observed
between carrier and outbreak viruses, which may suggest that asymptomatic
carriers of FMDV contribute to regional disease persistence.Other authors
See publication
-
Pathogenesis of Primary Foot-and-Mouth Disease Virus Infection in the Nasopharynx of Vaccinated and Non-Vaccinated Cattle
PLoS ONE
A time-course pathogenesis study was performed to compare and contrast primary FMDV infection following simulated-natural virus exposure of cattle that were non-vaccinated or vaccinated using a recombinant adenovirus-vectored FMDV vaccine. FMDV genome and infectious virus were detected during the initial phase of infection in both categories of animals with consistent predilection for the nasopharyngeal mucosa. A rapid progression of infection with viremia and widespread dissemination of virus…
A time-course pathogenesis study was performed to compare and contrast primary FMDV infection following simulated-natural virus exposure of cattle that were non-vaccinated or vaccinated using a recombinant adenovirus-vectored FMDV vaccine. FMDV genome and infectious virus were detected during the initial phase of infection in both categories of animals with consistent predilection for the nasopharyngeal mucosa. A rapid progression of infection with viremia and widespread dissemination of virus occurred in non-vaccinated animals whilst vaccinated cattle were protected from viremia and clinical FMD. Analysis of micro-anatomic distribution of virus during early infection by lasercapture microdissection localized FMDV RNA to follicle-associated epithelium of the nasopharyngeal mucosa in both groups of animals, with concurrent detection of viral genome in nasopharyngeal MALT follicles in vaccinated cattle only. FMDV structural and non-structural proteins were detected in epithelial cells of the nasopharyngeal mucosa by immunomicroscopy 24 hours after inoculation in both non-vaccinated and vaccinated steers. Co-localization of CD11c+/MHC II+ cells with viral protein occurred early at primary infection sites in vaccinated steers while similar host-virus interactions were observed at later time points in non-vaccinated steers. Immunomicroscopic evidence of an activated antiviral response at primary infection sites of vaccinated cattle was corroborated by a relative induction of interferon -α, -β, -γ and -λ mRNA in micro-dissected samples of nasopharyngeal mucosa. Although vaccination protected cattle from viremia and clinical FMD, there was subclinical infection of epithelial cells of the nasopharyngeal mucosa that could enable shedding and long-term persistence of infectious virus. Additionally, these data indicate different mechanisms within the immediate host response to infection between non-vaccinated and vaccinated cattle.
See publication
-
Early Events in the Pathogenesis of Foot-and-Mouth Disease in Pigs; Identification of Oropharyngeal Tonsils as Sites of Primary and Sustained Viral Replication
PLoS ONE
A time-course study was performed to elucidate the early events of foot-and-mouth disease virus (FMDV) infection in pigs subsequent to simulated natural, intra-oropharyngeal, inoculation. The earliest detectable event was primary infection in the lingual and paraepiglottic tonsils at 6 hours post inoculation (hpi) characterized by regional localization of viral RNA, viral antigen, and infectious virus. At this time FMDV antigen was localized in cytokeratin-positive epithelial cells and…
A time-course study was performed to elucidate the early events of foot-and-mouth disease virus (FMDV) infection in pigs subsequent to simulated natural, intra-oropharyngeal, inoculation. The earliest detectable event was primary infection in the lingual and paraepiglottic tonsils at 6 hours post inoculation (hpi) characterized by regional localization of viral RNA, viral antigen, and infectious virus. At this time FMDV antigen was localized in cytokeratin-positive epithelial cells and CD172a-expressing leukocytes of the crypt epithelium of the paraepiglottic tonsils. De novo replication of FMDV was first detected in oropharyngeal swab samples at 12 hpi and viremia occurred at 18–24 hpi, approximately 24 hours prior to the appearance of vesicular lesions. From 12 through 78 hpi, microscopic detection of FMDV was consistently localized to cytokeratin-positive cells within morphologically characteristic segments of oropharyngeal tonsil crypt epithelium. During this period, leukocyte populations expressing CD172a, SLA-DQ class II and/or CD8 were found in close proximity to infected epithelial cells, but with little or no co-localization with viral proteins. Similarly, M-cells expressing cytokeratin-18 did not co-localize with FMDV proteins. Intra-epithelial micro-vesicles composed of acantholytic epithelial cells expressing large amounts of structural and non-structural FMDV proteins were present within crypts of the tonsil of the soft palate during peak clinical infection. These findings inculpate the paraepiglottic tonsils as the primary site of FMDV infection in pigs exposed via the gastrointestinal tract. Furthermore, the continuing replication of FMDV in the oropharyngeal tonsils during viremia and peak clinical infection with no concurrent amplification of virus occurring in the lower respiratory tract indicates that these sites are the major source of shedding of FMDV from pigs.
Other authors
See publication
-
Detection of foot-and-mouth disease virus RNA and capsid protein in lymphoid tissues of convalescent pigs does not indicate existence of a carrier State
Transboundary and Emerging Diseases
A systematic study was performed to investigate the potential of pigs to establish and maintain persistent foot-and-mouth disease virus (FMDV) infection. Infectious virus could not be recovered from sera, oral, nasal or oropharyngeal fluids obtained after resolution of clinical infection with any of five FMDV strains within serotypes A, O and Asia-1. Furthermore, there was no isolation of live virus from tissue samples harvested at 28–100 days post-infection from convalescent pigs recovered…
A systematic study was performed to investigate the potential of pigs to establish and maintain persistent foot-and-mouth disease virus (FMDV) infection. Infectious virus could not be recovered from sera, oral, nasal or oropharyngeal fluids obtained after resolution of clinical infection with any of five FMDV strains within serotypes A, O and Asia-1. Furthermore, there was no isolation of live virus from tissue samples harvested at 28–100 days post-infection from convalescent pigs recovered from clinical or subclinical FMD. Despite lack of detection of infectious FMDV, there was a high prevalence of FMDV RNA detection in lymph nodes draining lesion sites harvested at 35 days post-infection, with the most frequent detection recorded in popliteal lymph nodes (positive detection in 88% of samples obtained from non-vaccinated pigs). Likewise, at 35 dpi, FMDV capsid antigen was localized within follicles of draining lymph nodes, but without concurrent detection of FMDV non-structural protein. There was a marked decline in the detection of FMDV RNA and antigen in tissue samples by 60 dpi, and no antigen or viral RNA could be detected in samples obtained at 100 dpi. The data presented herein provide the most extensive investigation of FMDV persistence in pigs. The overall conclusion is that domestic pigs are unlikely to be competent long-term carriers of infectious FMDV; however, transient persistence of FMDV protein and RNA in lymphoid tissues is common following clinical or subclinical infection
Other authors
See publication
-
Foot-and-mouth disease virus virulence in cattle is co-determined by viral replication dynamics and route of infection
Virology
Early events in the pathogenesis of foot-and-mouth disease virus (FMDV) infection in cattle were investigated through aerosol and intraepithelial lingual (IEL) inoculations of a cDNA-derived FMDV-A24 wild type virus (FMDV-WT) or a mutant derived from the same clone (FMDV-Mut). After aerosolization of FMDV-WT, primary infection sites had significantly greater quantities of FMDV, viral RNA, and type I/III interferon (IFN) activity compared to corresponding tissues from cattle infected with…
Early events in the pathogenesis of foot-and-mouth disease virus (FMDV) infection in cattle were investigated through aerosol and intraepithelial lingual (IEL) inoculations of a cDNA-derived FMDV-A24 wild type virus (FMDV-WT) or a mutant derived from the same clone (FMDV-Mut). After aerosolization of FMDV-WT, primary infection sites had significantly greater quantities of FMDV, viral RNA, and type I/III interferon (IFN) activity compared to corresponding tissues from cattle infected with FMDV-Mut. Additionally, FMDV-WT-infected cattle had marked induction of systemic IFN activity in serum. In contrast, FMDV-Mut aerosol-infected cattle did not manifest systemic IFN response nor had viremia. Interestingly, IEL inoculation of FMDV-Mut in cattle restored the virulent phenotype and systemic IFN response. These data indicate that the attenuated phenotype in cattle is associated with decreased replicative efficiency, reflected by decreased innate response. However, attenuation is abrogated by bypassing the common primary infection sites, inducing accelerated viral replication at the inoculation site.
Other authors
See publication
-
Infection dynamics of foot-and-mouth disease virus in pigs using two novel simulated-natural inoculation methods
Research in Veterinary Science
In order to characterize foot-and-mouth disease virus (FMDV) infection dynamics in pigs, two simulated-natural inoculation systems were developed and evaluated. Intra-oropharyngeal (IOP) and intra-nasopharyngeal (INP) inoculation both enabled precise control of dose and timing of inoculation while simulating field exposure conditions.
There were substantial differences between outcomes of infections by the two routes. IOP inoculation resulted in consistent and synchronous infection…
In order to characterize foot-and-mouth disease virus (FMDV) infection dynamics in pigs, two simulated-natural inoculation systems were developed and evaluated. Intra-oropharyngeal (IOP) and intra-nasopharyngeal (INP) inoculation both enabled precise control of dose and timing of inoculation while simulating field exposure conditions.
There were substantial differences between outcomes of infections by the two routes. IOP inoculation resulted in consistent and synchronous infection, whereas INP inoculation at similar doses resulted in delayed, or completely absent infection. All pigs that developed clinical infection had detectable levels of FMDV RNA in their oropharynx directly following inoculation. Furthermore, FMDV antigens were localized to the oropharyngeal tonsils suggesting a role in early infection.
The utility of IOP inoculation was further demonstrated in a vaccine-challenge experiment. Thus, the novel system of IOP inoculation described herein, offers a valid alternative to traditionally used systems for FMDV inoculation of pigs, applicable for experimental studies of FMDV pathogenesis and vaccinology
Other authors
See publication
-
Morphologic and phenotypic characteristics of myocarditis in two pigs infected by foot-and mouth disease virus strains of serotypes O or A
Acta Veterinaria Scandinavica
Myocarditis is often cited as the cause of fatalities associated with foot-and-mouth disease virus (FMDV) infection. However, the pathogenesis of FMDV-associated myocarditis has not been described in detail. The current report describes substantial quantities of FMDV in association with a marked mononuclear inflammatory reaction, interstitial edema and cardiomyocyte degeneration in the myocardium of two pigs that died during acute infection with either of two different strains of FMDV. Despite…
Myocarditis is often cited as the cause of fatalities associated with foot-and-mouth disease virus (FMDV) infection. However, the pathogenesis of FMDV-associated myocarditis has not been described in detail. The current report describes substantial quantities of FMDV in association with a marked mononuclear inflammatory reaction, interstitial edema and cardiomyocyte degeneration in the myocardium of two pigs that died during acute infection with either of two different strains of FMDV. Despite similar clinical progression, there was a marked variation in morphological characteristics of myocarditis with a significant difference in intensity of myocardial inflammation between the two cases. Phenotypic characterization of leukocyte populations revealed that in both cases, the inflammatory infiltrate consisted mainly of combinations of CD172a+, CD163+ and CD44+ cells, with a distinct subset of CD8+ cells, but with consistent lack of detection of CD3+ and CD21+ cells. This suggests that the FMDV-associated acute myocardial inflammation in the two observed cases consisted mainly of leukocytes of monocyte lineage, with a distinct population of CD8+ cells which, based on lack of CD3 detection in serial sections, are likely to represent NK cells.
Other authors
See publication
-
Pathogenesis of highly virulent African swine fever virus in domesticpigs exposed via intraoropharyngeal, intranasopharyngeal, andintramuscular inoculation, and by direct contact with infected pigs
Virus Research
To investigate the pathogenesis of African swine fever virus (ASFV), domestic pigs (n = 18) were challenged with a range (102–10650% hemadsorbing doses (HAD50)) of the highly virulent ASFV-Malawi strain by inoculation via the intraoropharyngeal (IOP), intranasopharyngeal (INP), or intramuscular (IM)routes. A subsequent contact challenge experiment was performed in which six IOP-inoculated donor pigs were allowed to have direct contact (DC) with six naïve pigs for exposure times that varied from…
To investigate the pathogenesis of African swine fever virus (ASFV), domestic pigs (n = 18) were challenged with a range (102–10650% hemadsorbing doses (HAD50)) of the highly virulent ASFV-Malawi strain by inoculation via the intraoropharyngeal (IOP), intranasopharyngeal (INP), or intramuscular (IM)routes. A subsequent contact challenge experiment was performed in which six IOP-inoculated donor pigs were allowed to have direct contact (DC) with six naïve pigs for exposure times that varied from 24 to72 h. All challenge routes resulted in clinical progression and postmortem lesions similar to those previ-ously described in experimental and natural infection. The onset of clinical signs occurred between 1 and 7days post inoculation (dpi) and included pyrexia with variable progression to obtundation, hematochezia,melena, moribundity and death with a duration of 4–11 days. Viremia was first detected between 4 and5 dpi in all inoculation groups whereas ASFV shedding from the nasal cavity and tonsil was first detectedat 3–9 dpi. IM and DC were the most consistent modes of infection, with 12/12 (100%) of pigs challengedby these routes becoming infected. Several clinical and virological parameters were significantly different between IM and DC groups indicating dissimilarity between these modes of infection. Amongst the simulated natural routes, INP inoculation resulted in the most consistent progression of disease across the widest range of doses whilst preserving simulation of natural exposure and therefore may provide a superior system for pathogenesis and vaccine efficacy investigation.
Other authors
See publication
-
The Pathogenesis of Foot-and-Mouth Disease I: Viral Pathways in Cattle
Transboundary and Emerging Diseases
In 1898, foot-and-mouth disease (FMD) earned a place in history as the first
disease of animals shown to be caused by a virus. Yet, despite over a century of
active investigation and elucidation of many aspects of FMD pathogenesis, critical
knowledge about the virus–host interactions is still lacking. The aim of this
review is to provide a comprehensive overview of FMD pathogenesis in cattle
spanning from the earliest studies to recently acquired insights emphasizing
works…In 1898, foot-and-mouth disease (FMD) earned a place in history as the first
disease of animals shown to be caused by a virus. Yet, despite over a century of
active investigation and elucidation of many aspects of FMD pathogenesis, critical
knowledge about the virus–host interactions is still lacking. The aim of this
review is to provide a comprehensive overview of FMD pathogenesis in cattle
spanning from the earliest studies to recently acquired insights emphasizing
works which describe animals infected by methodologies most closely resembling
natural infection (predominantly aerosol or direct/indirect contact). The
three basic phases of FMD pathogenesis in vivo will be dissected and characterized
as: (i) pre-viraemia characterized by infection and replication at the
primary replication site(s), (ii) sustained viraemia with generalization and
vesiculation at secondary infection sites and (iii) post-viraemia/convalescence
including resolution of clinical disease that may result in long-term persistent
infection. Critical evaluation of the current status of understanding will be used
to identify knowledge gaps to guide future research efforts.Other authors
See publication
-
The Pathogenesis of Foot‐and‐Mouth Disease II: Viral Pathways in Swine, Small Ruminants, and Wildlife; Myotropism, Chronic Syndromes, and Molecular Virus–Host Interactions
Transboundary and Emerging Diseases
Investigation into the pathogenesis of foot‐and‐mouth disease (FMD) has focused on the study of the disease in cattle with less emphasis on pigs, small ruminants and wildlife. ‘Atypical’ FMD‐associated syndromes such as myocarditis, reproductive losses and chronic heat intolerance have also received little attention. Yet, all of these manifestations of FMD are reflections of distinct pathogenesis events. For example, naturally occurring porcinophilic strains and unique virus–host combinations…
Investigation into the pathogenesis of foot‐and‐mouth disease (FMD) has focused on the study of the disease in cattle with less emphasis on pigs, small ruminants and wildlife. ‘Atypical’ FMD‐associated syndromes such as myocarditis, reproductive losses and chronic heat intolerance have also received little attention. Yet, all of these manifestations of FMD are reflections of distinct pathogenesis events. For example, naturally occurring porcinophilic strains and unique virus–host combinations that result in high‐mortality outbreaks surely have their basis in molecular‐, cellular‐ and tissue‐level interactions between host and virus (i.e. pathogenesis). The goal of this review is to emphasize how the less commonly studied FMD syndromes and host species contribute to the overall understanding of pathogenesis and how extensive in vitro studies have contributed to our understanding of disease processes in live animals.
Other authors
See publication
-
The Early Pathogenesis of Foot-and-Mouth Disease in Cattle After Aerosol Inoculation: Identification of the Nasopharynx as the Primary Site of Infection
Veterinary Pathology
To characterize the early events of foot-and-mouth disease virus (FMDV) infection in cattle subsequent to simulated natural exposure, 16 steers were aerosol inoculated with FMDV and euthanized at various times. Samples were collected from each steer antemortem (serum, nasal swabs, and oral swabs) and postmortem (up to 40 tissues per animal) and screened for FMDV by virus isolation and for FMDV RNA by real-time reverse transcription polymerase chain reaction. Tissues that tested positive for…
To characterize the early events of foot-and-mouth disease virus (FMDV) infection in cattle subsequent to simulated natural exposure, 16 steers were aerosol inoculated with FMDV and euthanized at various times. Samples were collected from each steer antemortem (serum, nasal swabs, and oral swabs) and postmortem (up to 40 tissues per animal) and screened for FMDV by virus isolation and for FMDV RNA by real-time reverse transcription polymerase chain reaction. Tissues that tested positive for FMDV
or viral RNA were examined by immunohistochemistry and multichannel immunofluorescence microscopy. In previremic steers, FMDV was most consistently localized to nasopharyngeal tissues, thereby indicating this region as the most important site of
primary viral replication. The earliest site of microscopic localization of FMDV antigens was the lymphoid follicle-associated epithelium of the pharyngeal mucosa-associated lymphoid tissue of the nasopharynx at 6 hours postaerosolization. At early time points after aerosol inoculation, viral antigens colocalized with cytokeratin-positive pharyngeal epithelial cells; intraepithelial FMDV-negative, MHCII/CD11c-double-positive dendritic cells were present in close proximity to FMDV-positive cells. Onset of viremia coincided with marked increase of viral loads in pulmonary tissues and with substantial decrease of viral detection in nasopharyngeal tissues. These data indicate that subsequent to aerogenous exposure to FMDV, the temporally defined critical pathogenesis events involve (1) primary replication in epithelial cells of the pharyngeal mucosa-associated lymphoid tissue crypts and (2) subsequent widespread replication in pneumocytes in the lungs, which coincides with (3) the establishment of sustained
viremia.See publication
-
Foot-and-Mouth Disease Virus Interserotypic Recombination in Superinfected Carrier Cattle
-
Viral recombination contributes to the emergence of novel strains with the potential for altered host range, transmissibility, virulence, and immune evasion. For foot-and-mouth disease virus (FMDV), cell culture experiments and phylogenetic analyses of field samples have demonstrated the occurrence of recombination. However, the frequency of recombination and associated virus-host interactions within an infected host have not been determined. We have previously reported the detection of…
Viral recombination contributes to the emergence of novel strains with the potential for altered host range, transmissibility, virulence, and immune evasion. For foot-and-mouth disease virus (FMDV), cell culture experiments and phylogenetic analyses of field samples have demonstrated the occurrence of recombination. However, the frequency of recombination and associated virus-host interactions within an infected host have not been determined. We have previously reported the detection of interserotypic recombinant FMDVs in oropharyngeal fluid (OPF) samples of 42% (5/12) of heterologously superinfected FMDV carrier cattle. The present investigation consists of a detailed analysis of the virus populations in these samples including identification and characterization of additional interserotypic minority recombinants. In every animal in which recombination was detected, recombinant viruses were identified in the OPF at the earliest sampling point after superinfection. Some recombinants remained dominant until the end of the experiment, whereas others were outcompeted by parental strains. Genomic analysis of detected recombinants suggests host immune pressure as a major driver of recombinant emergence as all recombinants had capsid-coding regions derived from the superinfecting virus to which the animals did not have detectable antibodies at the time of infection. In vitro analysis of a plaque-purified recombinant virus demonstrated a growth rate comparable to its parental precursors, and measurement of its specific infectivity suggested that the recombinant virus incurred no penalty in packaging its new chimeric genome. These findings have important implications for the potential role of persistently infected carriers in FMDV ecology and the emergence of novel strains.
See publication
-
Simultaneous and staggered footand-mouth disease virus coinfection of cattle
-
Foot-and-mouth disease (FMD) field studies have suggested the occurrence of simultaneous infection of individual hosts by multiple virus strains; however, the pathogenesis of foot-and-mouth disease virus (FMDV) coinfections is largely unknown. In the current study, cattle were experimentally exposed to two FMDV strains of different serotypes (O and A). One cohort was simultaneously infected with both viruses, while additional cohorts were initially infected with FMDV A and subsequently…
Foot-and-mouth disease (FMD) field studies have suggested the occurrence of simultaneous infection of individual hosts by multiple virus strains; however, the pathogenesis of foot-and-mouth disease virus (FMDV) coinfections is largely unknown. In the current study, cattle were experimentally exposed to two FMDV strains of different serotypes (O and A). One cohort was simultaneously infected with both viruses, while additional cohorts were initially infected with FMDV A and subsequently superinfected with FMDV O after 21 or 35 days. Coinfections were confirmed during acute infection, with both viruses concurrently detected in blood, lesions, and secretions. Staggered exposures resulted in overlapping infections as convalescent animals with persistent subclinical FMDV infection were superinfected with a heterologous virus. Staggering virus exposure by 21 days conferred clinical protection in six of eight cattle, which were subclinically infected following the heterologous virus exposure. This effect was transient, as all animals superinfected at 35 days post-initial infection developed fulminant FMD. The majority of cattle maintained persistent infection with one of the two viruses while clearing the other. Analysis of viral genomes confirmed interserotypic recombination events within 10 days in the upper respiratory tract of five superinfected animals from which the dominant genomes contained the capsid coding regions of the O virus and nonstructural coding regions of the A virus. In contrast, there were no dominant recombinant genomes detected in samples from simultaneously coinfected cattle. These findings inculpate persistently infected carriers as potential FMDV mixing vessels in which novel strains may rapidly emerge through superinfection and recombination.
See publication
-
The Carrier Conundrum; A Review of Recent Advances and Persistent Gaps Regarding the Carrier State of Foot-and-Mouth Disease Virus
-
The existence of a prolonged, subclinical phase of foot-and-mouth disease virus (FMDV) infection in cattle was first recognized in the 1950s. Since then, the FMDV carrier state has been a subject of controversy amongst scientists and policymakers. A fundamental conundrum remains in the discordance between the detection of infectious FMDV in carriers and the apparent lack of contagiousness to in-contact animals. Although substantial progress has been made in elucidating the causal mechanisms of…
The existence of a prolonged, subclinical phase of foot-and-mouth disease virus (FMDV) infection in cattle was first recognized in the 1950s. Since then, the FMDV carrier state has been a subject of controversy amongst scientists and policymakers. A fundamental conundrum remains in the discordance between the detection of infectious FMDV in carriers and the apparent lack of contagiousness to in-contact animals. Although substantial progress has been made in elucidating the causal mechanisms of persistent FMDV infection, there are still critical knowledge gaps that need to be addressed in order to elucidate, predict, prevent, and model the risks associated with the carrier state. This is further complicated by the occurrence of a distinct form of neoteric subclinical infection, which is indistinguishable from the carrier state in field scenarios, but may have substantially different epidemiological properties. This review summarizes the current state of knowledge of the FMDV carrier state and identifies specific areas of research in need of further attention. Findings from experimental investigations of FMDV pathogenesis are discussed in relation to experience gained from field studies of foot-and-mouth disease.
See publication
-
Viral population diversity during co-infection of foot-and-mouth disease virus serotypes SAT1 and SAT2 in African buffalo in Kenya
-
See publication
View Jonathan’s full profile
- See who you know in common
- Get introduced
- Contact Jonathan directly
Sign in
Stay updated on your professional world
Sign in
By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.
New to LinkedIn? Join now
Explore collaborative articles
We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.
Explore MoreAdd new skills with these courses
- 30m Forbes 400 Private Equity Leader Steve Klinsky (Thirty Minute Mentors)
- 2h 6m Training Neural Networks in C++
- 1h 41m Academic Research Foundations: Quantitative
See all courses